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PROPAGATION OF ELECTROMAGNETIC WAVES IN CIRCULAR
RODS IN TORSION
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Invariance considerations are employed to write down constitutive equations governing the
propagation of electromagnetic waves in isotropic materials with a centre of symmetry which are
subject to a static deformation. It is assumed that the dielectric displacement and magnetic induc-
tion vectors are linear functions of the electric and magnetic field intensities, respectively, but are
general polynomial functions in the quantities which specify the deformation.

The theory is employed to examine propagation along circular cylindrical rods in torsion.
Rotating waves are produced whose speed of propagation and rate of rotation depend upon the
magnitude of the deformation and the properties of the material. The nature of these waves is
examined for the general case where there is no restriction either upon the amount of torsion or

— upon the magnitude of the effect. When the amount of torsion, or the dependence of the effect

§ S upon deformation is small, solutions can be obtained based upon those for the propagation of waves

@) [ in undeformed materials. ,

= 1. INTRODUCTION

E 8 The formulation of constitutive equations in continuum physics has been considered in
—~ general terms by Pipkin & Rivlin (1959) and by Rivlin (1960). These relations characterize

physical properties of materials and are restricted by the assumption that they must be
unaltered by a simultaneous rotation of the reference frame and the physical system which
they describe. Further restrictions are imposed by the symmetry of the material being
examined. Such constitutive equations have been applied to problems involving electrical
conduction in deformed elastic materials by Pipkin & Rivlin (1960, 1961).
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390 J. E. ADKINS AND R. S. RIVLIN

In the present paper we consider the propagation of electromagnetic waves in deformed
elastic materials. It is assumed that the electric displacement vector D is a linear function
of the electric field intensity E and that the magnetic induction vector B is a linear function
of the magnetic field intensity H. In addition, the vectors D and B involve the quantities
defining the deformation non-linearly. Attention is confined to isotropic materials possess-
ing a centre of symmetry. It is further assumed that the deformation is unaffected by the
presence of electric and magnetic fields and that free charges and currents are zero. In
these circumstances the relations connecting D and B with E and H resemble those for an
undeformed aeolotropic material, the nature of the aeolotropy at each point depending upon
the deformation. When the expressions for D and B are introduced into Maxwell’s equa-
tions there result six linear differential equations for the determination of the components
of E and H.

The theory is employed in the present instance to examine the propagation of electro-
magnetic waves in twisted circular cylindrical rods. The analysis in cylindrical polar co-
ordinates leads to a pair of second-order differential equations involving two of the field
variables. Each of these equations reduces to the standard Bessel equation when the
material is undeformed. The speed of propagation of the wave is determined from a secular
equation derived from the boundary conditions, and this aspect is illustrated by the ex-
amples of the circular and coaxial waveguides. For a given mode of transmission the
secular equation yields a pair of waves propagated with different speeds; these combine to
give a wave which rotates during propagation.

Devices using such a rotating wave are of importance in micro-wave transmission (see,
for example, Katz 1959). In these applications the rotation is usually produced by intro-
ducing ferrites into the waveguide and applying a static magnetic field. Mathematical
aspects of waveguides of this kind have been investigated by Kales, Chait & Sakiotis (1953),
Gamo (1953) and others. The rotating waves in these ferrite-filled waveguides are non-
reciprocal, that is, if the direction of propagation is reversed, the direction of rotation of the
wave is unaltered. For the materials examined in the present paper the wave is reciprocal
and if the direction of propagation is reversed the direction of rotation is also reversed. The
wave pattern then retraces its original path.

In the final sections of the paper, the theory is specialized to the cases where the angle of
torsion is small (§§9 to 11), and where the angle of torsion is large but the dependence of
electromagnetic properties upon deformation is small (§§12 to 14). In both cases, modes of
transmission may be distinguished which differ only slightly from transverse magnetic or
transverse electric waves in the undeformed material and to the order of approximation
considered, the wave is transmitted without attenuation or distortion. The rate of rotation
of the wave differs for these two types of propagation, but in the case where the amount of
torsion is small it depends in a simple manner upon the constants describing the variation
of electric and magnetic properties with deformation. The perturbation procedures of
§§9 to 14 may, in principle, be extended to obtain higher-order approximations to the field
components by assuming power series expansions either in the small parameter defining
the torsion (§§9 to 11) or that describing the dependence upon deformation (§§12 to 14),
and evaluating successive terms of the series by methods analogous to these used in finite
elasticity (see, for example, Green & Adkins 1960; Rivlin 1953; Rivlin & Topakoglu 1954).
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PROPAGATION OF ELECTROMAGNETIC WAVES 391

For convenience, the theory has been related to elastic materials. Since, however, the
electromagnetic constitutive equations are unaffected by the stress deformation relations
of the material, the analysis applies unchanged for any deformable material held in a state
of static deformation.

2. ELECTROMAGNETIC WAVES IN DEFORMED ELASTIC MATERIALS

We consider a material which is isotropic in its undeformed state and possesses a centre
of symmetry. The material is held in a given state of deformation and an electric field E
and magnetic field H are applied to it. We assume that the resulting electric displacement
field D and magnetic induction field B, at the point ¥’ of a curvilinear co-ordinate system x,

are related to E and H by Di=oE and B =piH, (21)
where o = g0+, ¢+ “251):5;!"} (2-2)
B = Bodi+Brcj+Bycict,

Ei Hi, D' and Bf are the contravariant components of E, H, D and B respectively in the
system x and ¢} is defined by ‘ oxi ok
G =0C" 5% x5~ G (2-3)

In (2-3), X7 are the co-ordinates in the undeformed material of the particle which is at &’
in the deformed state, G™ is the contravariant metric tensor associated with the curvilinear
system x' at the point X* and g, is the covariant metric tensor for the system at the point x'.
In (2-2) 0! denotes the Kronecker delta and a,, ,, a,, £, #, and £, are polynomial functions
of the three independent invariants

¢, F(cici—cici), |ci (2-4)
of ¢].

The relations (2-1) and (2-2) imply that in the deformed state the material becomes
curvilinearly aeolotropic as regards its electromagnetic properties, the nature of this
aeolotropy depending upon the deformation. In general, when «} and £ are different func-
tions, the extent of the acolotropy is different for the electric and magnetic properties. When
the deformation is uniform, o} and £ are constants and the material behaves as a uniformly
(rectilinearly) aeolotropic medium.

In the absence of free electric currents and charges, the clectromagnetic field equations
take the form D

curl E-{—%l—?— =0 and curlH-%— == 0. (2-5)
For a sinusoidal wave, of angular frequency v, we take
E = ,%G:a-exp (iwt), H= %l:lexp (iwt),} (2-6)
D = Zdexp (iwt) and B = Zbexp (ivt),

where &, h, d and b are complex vectors dependent on ¥ and independent of time. Adopting
the usual convention, we shall omit the symbol Z in the following discussion. Introducing
(2+6) into (2-5), we obtain

curl 8+iwb == 0 and curl h—iwd = 0. (2-7)
49-2
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392 J. E. ADKINS AND R. S. RIVLIN

In the curvilinear co-ordinate system x, equations (2-7) take the form

£ g2 ;i = (2:8)
and g g6l —iwdi = 0,

where g = |g;;|, €/" is the alternating symbol (defined by é/” =1 or —1 accordingly as
yn is an even or odd permutation of 123 and 0 otherwise), and ; denotes covariant differ-
entiation with respect to #/. From (2-1), (2:6) and (2-8)

87 g e j+iufi i = 0 (29)
and gta, ¢l ;—iwaiel = 0.
3. Torsion

We now take as the curvilinear co-ordinate system x a cylindrical polar co-ordinate
system (r, 0, z) and suppose that a particle of the material, which in its undeformed state
is at (R, ©, Z) in this system, moves to (r, 0, z) in the deformed state. Then

(XlsXZ: XS) = (R, @7 Z)) (xla x2}'x3) = (7’3 03 Z), (3'1)

and the metric tensors g,;, GV are given by

En=8s=1, gu=1% &i=0 (z 4:].):} (3:2)
g} =1, J )
and GUl=G3¥=1 G®=1/R? Gi=0 (i%]). (3-3)
Also, we have
dét , , 0¢b dé!
P72 A
A L R T
=) ~+t= —~t35 = (3-4)
or a0 0z |

We may obtain # ; by replacing ¢ by kin (3-4).

We consider a rod (or tube) of circular cross-section which is subjected to a simple torsion.
We take the z axis of the cylindrical polar co-ordinate system (7, 0, z) along the axis of the
rod, and define the deformation by

r=rR), 0=0+1Z, z=2, (3-5)
where 7 is a constant.

Using a prime to denote differentiation with respect to R, we obtain from (2-3), with
(8-1) to (3-3) and (3+5)

r2—1 0 0
lleill = 0 2 7 (3-6)
0 % 0
From (3-6), we obtain
| (r2—1)2 0 0
b ekl = 0 7221 +7%%) 7132 (3-7)
0 73rt 722
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PROPAGATION OF ELECTROMAGNETIC WAVES 393
and ci=7r"247%2-1,
Melef—ciel) = 72(r2—2), (3:8)
|ci| = —(r"2—1) 722
Introducing (3-6) and (3-7) into (2-2), we obtain
oo (r'2—1) 4-a, (r'2—1)2 0 0
il = 0 o+ 72?0y + (1 +722)] 7 +ayr??) |, (3-9)
0 Tr2(oty -+ 0y 7212) g+ 0ty 7272

4. WAVE PROPAGATION IN A TWISTED ROD

We now consider a plane electromagnetic wave which is propagated along the deformed
rod. Since the wave is propagated in the z-direction and the vector € is a single valued
function of position we may assume that it can be expressed in the form

8= 3 eMexpli(nf—p,2)], (4-1)

where e® are functions of r only and p, are constants which may be real or complex. We
therefore consider solutions of (2-9) of the form

e=eexp[i(nf—pz)], (p,=20) (4-2)
where e is a function of 7 only and 7 is a positive or negative integer. The vectors h, d and b
may be expressed in similar form.
Employing (3-2), (3-4) and (3-9) in (2-9), we obtain

23 72 _
v %% iyl =0,
51 973 _
O (B3 = 0, (&9
d det . . 7
p (r%?) —~5§+1wr(/5’§h2+ﬁ§h3) =0,
B3 2
and %—r"’%—ﬁ;—iwm}é‘ =0,
Al 73
%Z———%f—;——iwr(ccge'2+a§é3) =0, (4+4)
_ Al
9 (1)~ 0~ iar{e - ada) = 0.
The physical components of e and h are given by
(e,, o> ez) = (el> rez, 33)3 (hn h&? hz) = (hl> TkZ, hg)) (4'5)
with - & =cfexp[i(nf—pz)], B = hrexp [i(nf—pz)].

Introducing (4+5) into equations (4-3) and (4-4) we obtain
preg+wifih, = —ne,,
pe,—wfthy = i(de,[dr) +wrf3h,, (4-6)
d(rep) /dr—ine,+iw(f3he+1F3R,) = 0,
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394 J. E. ADKINS AND R. S. RIVLIN
and wrote,— prhy = nh,,
wadey+ph, = —wrake,i(dh,/dr), (47)

d(r/ig)/dr—inh —iw(ade,+rade,) = 0.
From the second of (4:6) and the first of (4:7) it follows that

a(sten

re, = {ipr(de,/dr) —w(nff—pr?f3) R}A, |

(4:8)
hy == {iora} (de,/dr) — (np— % f3) B}/, )
where A, = pPP—wa}fa. (4-9)
Similarly from the first of (4:6) and the second of (4:7), we obtain
Ml (410
rh, = {w(nag— pr¥ad) e,+ipr(dh,/dr)}A,, '
where A, = pr—wlfl. (4-11)

Introducing the expressions (4-8) and (4-10) into the third of equations (4-6) and (4-7)
we obtain d2e de

o de, dh,
I(Alﬂa;gé"%AZ dr “’—AS z)+B dr ‘l B. k == 0 (4.12)
C S+ Cye i (D S Dy S+ i) = o, (13)

where, since o3 = %4, f3 = 1’03,
A, = ortal A Ay,

d (ral
4y = oA S (~A~;)

Ay = 0N {0r2BY (30— o3a3) — (nPad—2npo 1 pr°a)}, W
B, = Wt {0} f— a3 BY) — np o fi— o3 1) -+ 0Pl B (03B 23D,
By = — A Ayrd[(np— 0%l f3) A, |
and Cy = —A,B,[A,, 1
Cy = — A, A3rd[(mp— o lod) [ Ag) dr,
Dy = —ar?fIA A, » (1)

d [rp!
— 2 1
D, = wAlAzrdr(AQ)’

Dy = — oA {w*r*al(B3F3—P303) — (WB3— 2mpB3-+ p*°F3) )
From the system (4-12), (4-13) we may derive for £, four independent solutions, which we
may denote by R, and the general solution may be written as

Z R, (4-16)

=1
where K, are arbitrary constants. The functions R, depend also upon o, n, p and 7 so that

we may write R,=R,(r) =R, (r; w,7,n; p). 17
Iu, n e
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PROPAGATION OF ELECTROMAGNETIC WAVES 395

When £, has been determined, ¢, may be found by eliminating e, ¢, from (4:12), (4-13)
and the equation

Gyt (Gt Cy) €+ Che, +id(Dy i+ Dyt Dyh,) dr = 0, (4-18)

which is obtained by diﬁerentiating (4-13). The prime denotes differentiation with respect
to 7. This procedure yields

A 4y 4 id, id, Byh,+Byh,
ilo € Cile=—| 0 G, (D K+ Dok Dyh,) | (4:19)
C, CyCy C | G, C4+Cy id(D,R+Dyk,+Dyh)fdr

Alternatively we may derive from (4-12), (4-13) four independent solutions for e,.

Denoting these by :
Sy =8,(r) = S,(r; 0,05 p), (4-20)

(4-21)

4
we have e,= > LS,
w=1

where L, are further arbitrary constants. When ¢, has been determined, /2, may be evalu-
ated from the equation

' 'Dl D2 DB i !
i 0 BZ B3 = W{!
' B, By+B; B |

iD, iD, Cye,+Cye, !
0 B, i(Aye0-+Aye,+Adge,) |, (422)
' B, By-B, id(4,ei+-A,e.+-Age)/dr |

analogous to (4-19).

By introducing the expression (4-19) for ¢, into (4-13) we may obtain a fourth-order
differential equation for 4,. Similarly from (4-22) and (4-12) we may derive a fourth-order
differential equation for ¢,. These equations for ¢, and 4, are, of course, identical.

Since R, and §, are related by (4-19) or (4-22), we may, without loss of generality, choose
S, in such a way that, in the general solution of equations (4:12) and (4-13) given by (4-16)
and (4-21), we have L, = K. Then, equations (4-16) and (4-21) may be rewritten as

4
h,= 3 KR,
= (4-23)

4
and ¢, = 2 K/LS/L'
p=1

5. BEHAVIOUR OF SOLUTIONS ON THE AXIS

We confine attention to situations in which 7" may be expressed as a polynomial in 72,
These include as a special case the torsion of an incompressible solid rod for which " = 1;
more generally, for a solid rod we assume 7 = 1-- O(72). The invariants (3-8) and the co-
efficients &}, f may then be expressed as polynomials in 7? and the coefficients 4 , B, C,and
D, in (4:12) and (4-13) become polynomials in 7.

In these circumstances, we may assume that series solutions of (4:12) and (4-13) of the
forms

R, = 3 cprkte, § = an’;ﬂ’r“‘q (0=1,2,3,4) (5:1)
o

g=0
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396 J. E. ADKINS AND R. S. RIVLIN

exist with a finite range of convergence. The behaviour of the functions R, S, atr = 01is
determined by the values of £ and /in (5-1) and equations for these quantities are derived
by considering the coefficients of the lowest powers of r occurring when the series (5-1) are
introduced into (4-12) and (4-13).

Since o} and f} are polynomials in 72, we may write

ag+a,r? 0 0
”“}H = 0 agtagr?  aytanr? |, (5-2)
0 Gy r? ay+ag51?

where g;, a;; are constants and we have neglected terms of higher degree than the firstin 7%

Corresponding expressions apply for f; with a replaced by &.
From these expressions with (4-9) and (4-11) it follows that

A = A—0?, 72+ 0(r), A,= A—?6,r%+0(r*), (5+3)
where A = pt—wlayb,, } (5-4)
Oy = agbyy+ar by, 0y = byagy+b,ap.

The coefficients (4-11) and (4-15) now take the forms
4, = 4,7+ 0(r), Ay = A4y, 7+ 0(r),
Ay = —n’4y,+0(r%),
By = By, 1*+ 0(r%), By = By r*+0(rf),

D= =D+ 0(r), Dy= —Dyr+0(r),| (5%)
Dy = 02D+ 0(r?),
Cy— —BurS40(), Cy— Cyr?+0(r), |
where Ay =wayA2, Dy, = wbyA?,
By = Aw?[Alaghy—byay) —np(d;—0,) ] (5-6)
By, = 2A0*(Aagby— 0, np), Csy = 280*(Aayby—0,np).
Consistent with (5-1), to obtain equations for £ and / we may write
h, = cyrk, e, = dyr’, (5-7)
in (4-12) and (4-13) and, using (5-5), we obtain
idyy do(iP—n?) 7'+ ¢o(Byy b+ Byy) 742 = ’} (58)
1Dy co(R2—n?) rk+dy(Byy [—Cy,) 12 = 0,

¢oand d, being complex constants. In (5-8) we assume that By £+ B,y == 0 and B,, [ —Cj;, == 0.
If cither of these quantities become zero, we should need to consider the effect of terms
involving higher powers of 7 in the coefficients (5°5).

Since ¢, = 0 implies %, = 0, from (4-22), and /%, = 0 implies that ¢, = 0, from (4-19), we
consider solutions for which neither ¢, nor 4, is identically zero. In (5-8) we therefore require
co0and dy==0. If /. _ 5 e conclude from the first of (5-8), by letting > 0, that
¢y = 0. Similarly dy = 0 if £ > [+ 2. It follows that £—2 <! < k+2. If [ = k41 the first
of (5-8) can be satisfied with d; = 0 asr — 0, provided [ = +#n. However, the second of (5-8)
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PROPAGATION OF ELECTROMAGNETIC WAVES 397

would then require £ = 42 which is impossible, or ¢ ;= 0, which we have excluded. The
possibility £ = /41 must be ruled out on similar grounds.

If I = k42, it follows from the second of (5-8) that ¢, %= 0 provided £ = 4-n. From the
first of (5-8), we then obtain the relations

4idyy(n+1) dy+ (Byn+By) ¢p =0 (k=n=0), 1
4id))(n—1) dy+ (Byn—By)) ¢p =0 (k= —n= O)J
When &k = [—2 = +n, equation (4-22) becomes identical with the first of (5-8) as r — 0.

Similarly if k¥ = [+ 2, it follows from the first of (5-8) that d, % 0 provided [ = +n. From
the second of these equations we then obtain

4D,y (n+1) ¢y+ (Byn—Cqy) dy =0 (I=n=0), }
4Dy, (n—1) 6o+ (Byn+Cy) dy =0 (I= —n = 0),
and, in this case, (4-19) becomes identical with the second of (5-8) as r — 0.
We have thus indicated the existence of four independent series solutions of (4:12),(4-13)
with the leading terms taking the forms (5-7). For two of these ¥ = [+ 2, for the others
l=k+2.
To indicate the behaviour at 7 = 0 of the functions defined in (4:17) and (4:20) we use
the notati
¢ notation . (Rb Rz: R3’ R4) = (Rlnl’ Rln|+2’ R—Inl’ R—In|+2)3}
(S1’82’ S3’ S4) = (Slnl+2’ Slnl’ S*ln|+2> S—lnl)’

the suffixes in the right-hand members of these equations being the values of ¥ and / in the
series solutions (5-1).

Introducing (5+11) into (4:23), we obtain

(5:9)

(5°10)

(5°11)

h, =K, R|n|+K2RInI+2+K3R—InI+K4R—In|+2’} (5-12)
and ¢, = K Sipps2+ Ky S+ K S_ppp+ Ky S_py-
If no singularity in either ¢, and %, can exist at r = 0, we must have K; = K, = 0, and (5:12)
then yield
en Yle S llz = 'KlRlnl_l_Klenl-FZ’} (5.13)
and ¢, = Kl Sln|+2+K2S|n|'

Equations (5-8) can also be satisfied with non-zero values of ¢, and dy as 7 — 0ifk = [ = +n.
To determine whether the series solutions for ¢, and £, in each of these cases can be mutually
consistent we should need to consider the higher-order terms in the expansions (5:1) and
(5:8). We may, however, exclude these further possible solutions since the equations for
¢, and h, derived from (4-12) and (4:13) are each linear and of the fourth order. This implies
that any further solutions of these equations must be expressible as a linear combination of
those defined in (5-11). '

6. NATURE OF THE TRANSMITTED WAVE
In the application of formulae of §4, the quantities ¢,, ¢,, %, and &, are obtained by intro-
ducing into (4-8) and (4-10) the solutions for ¢, and 4, appropriate to the problem being
examined. These solutions are given by (4-23), (5:12) or (5:13). The components of & and
h are derived from (4-5) and the field vectors E and H are then given by (2-6). The constants

50 ' VoL. 255. A.


http://rsta.royalsocietypublishing.org/

. |
/I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

398 J. E. ADKINS AND R. S. RIVLIN

K, and p are determined from the boundary conditions and in general / emerges as the
result of an eigenvalue problem. The manner in which p is determined is illustrated by the
problems of the coaxial and circular wave guides examined in §§7 and 8.

We consider now the effect of combining the two solutions for whichz =mand n = —m
where m is a positive integer. For these two values of # we obtain from (4-14) and (4-15)
different expressions for 45, B,, B;, C,, C5 and D,;. Equations (4-12) and (4-13) then yield
different solutions for /, and ¢, and, in general, the values of p determined by the boundary
conditions will also differ. We distinguish quantities associated with the solutions for which

n =m and n = —m by the suffixes 1 and 2, respectively.
We therefore superpose the two solutions
E, = Z¢, exp (ivt), E, = %@, exp (iwt), (6-1)
where €, =e¥exp[i(ml—p,2)], €,=efexp[—i(ml-+p,z)] (6-2)

correspond to (4-2), e¥, ef being functions of 7 only.
In general, p; and p, may be complex and we write

by = pY+ipT, Py = Py +ips. (6:3)

From (6-1) and (6-2) we see that the amplitude of E; increases in the direction of propaga-
tion if pi and p7 are either both positive or both negative. If this occurs for any value of w
the system becomes unstable and we shall assume that this situation does not arise. Similarly
we exclude the possibility that p3 and p5 are either both positive or both negative.

To simplify subsequent expressions we write

e, = ef exp (7 z) = ef +iey ,1 (6-4)
e, = ef exp (p7 z) = ef +iez>)
— 1(pt + —
and ¢ =3(p+p7) 2 “’t: | (6:5)
= §(pt—p3)Im, 0=0-0z.]
In (6-4) e}, e7, e, e; are real vectors.
The composite wave E obtained from E,; and E, may then be written as
E=E,+E,
= H[e, exp{i(ml—pTz+wt)}+e,exp{—i(ml+piz—wt)}]
= 2[e, exp {i(ml—g4)}+e, exp {—i(mlf +¢)}]. (6-6)
We therefore have
E=Z[(E*+iE")exp (—ig)] = E* cos ¢ +E~sing, (6-7)
where E* = [(ef +eF) cosml— (e] —e3) sinmP],l (6:8)

E- = [(e] +e5) cosmf+ (e —ey}) sinmb]. ]

Equations (6-7) and (6-8) describe an elliptically polarized wave, the vector E executing
an ellipse as ¢(or ¢) varies. The semi-axes A;, A, of this ellipse are given by

2, A3 = }{(E*.E*+E~.E") + [(E*.E*—E-.E")2 4 4(E*.E")2]}} (6:9)

these quantities, and the orientation of the ellipse, varying, in general, with r and §.
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If there is no attenuation, so that p7 = p; = 0, e], ey, eJ and ey are functions only of 7.
The vectors E* and E- defined by (6-8) then involve ¢ and z only in the combination
0 = 6— 6z and the wave is transmitted without distortion, but in such a manner that the
field pattern rotates through an angle 0 = (p{ —p3)/(2m) per unit distance travelled in the
z-direction.

If each of the component waves E, and E, suffers an equal amount of attenuation during
transmission we have PT =p3 = —p~ (say)

and E* and E- become functions of r and # multiplied by the same exponential factor
exp (—p~z). Thefield againrotates and is then transmitted without distortion, the shape and
orientation of the polarization ellipse being the same for given values of r and 8 throughout
the tube. :

If p7 = p3, E, and E, undergo different amounts of attenuation. The ratio A,/A, is then
a function of z and the wave is distorted as it travels along the tube.

If the direction of propagation is reversed, this direction bears the same relation as the
original to the frame of reference if we reverse the sense in which 6 and z are measured, that
is, replace 8, z by —6, —z in (4-1) and (4-2). The sign of 7 is unaffected by this change of
co-ordinates. Insubsequent equationszand p are then replaced by —nand — p, respectively.
This leaves unchanged the coefficients (4-14) and (4+15) and the differential equations
(4:12) and (4-13). The values of p and hence also the rate of rotation relative to the new
co-ordinate system are then unchanged. The wave pattern therefore rotates back along the
path previously traversed and the system is reciprocal. This property may also be inferred
immediately from the fact that the tensors g;.o7, g, ff are symmetric (Katz 1959).

7. THE COAXIAL WAVEGUIDE

We consider propagation of an electromagnetic wave along a circular tube subjected to
the deformation (3-5) and bounded in the deformed state by the cylindrical surfaces
r=ry,r=r, (r, >r,). We assume that these boundaries are perfectly conducting so that
here the tangential components of E vanish. This implies thatatr =r;, r =r,

eg=-¢e,=0. (7-1)
From (4-10) we see that these conditions may be replaced by
¢, =0, dh,/dr=0 (7-2)

atr =1, r="1,. ,
The general solutions for ¢, and %, take the forms (4:23). From the boundary conditions

(7-2) we then have 4 , 4 ,
’ ﬂzl K/tR,u(rl) =0, Zl K,uR,u(rZ) =0,
= o
(7-3)
4 4
,ugl K/LS/l<rl) =0, ,42=:1 'K/I,S/t(rz) =0,

primes denoting differentiation with respect to r. These equations for K, are consistent if
Ri(r) Ry(n) Ry(r)) Ri(r)
Ri(ry) Rj(ry) Ry(ry) Ry(ry)
Si(r)  Sy(r)  Ss(ry)  Sa(ry)
Si(ra)  Sa(ry)  Ss(ry)  Sa(ry)

—o0. (7-4)

50-2
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Remembering (4:17) and (4-20) we see that this represents an equation for p when 7, v, n
and the dimensions of the tube are prescribed. The two values n = m, n = —m where m is
a positive integer, yield, in general, two values for p and the combination of these two solu-
tions yields, as in §6, a wave which rotates during propagation.

‘8. THE CIRCULAR WAVEGUIDE

A corresponding analysis may be applied to the propagation of an electromagnetic wave
along a solid circular rod subjected to torsion. In this case, the analysis of §5 is applicable
and ¢, and £, are given by (5-13). We again assume that the cylindrical surface r = 7, is
perfectly conducting, so that on r =r,

e,=0, dh,/dr=0. (8:1)
Introducing (5-13) into (8-1), we obtain

K\ Ry (1)) + Ky Ry 0(ry) = 0,} (8-2)
K, Simsa(ry) + Ko Syy(ry) = 0.
From these we obtain the secular equation
R/ R/
Inl(rl) |n|+2(rl) —0 (8'3)
Sire2()  Spui(r)

for p.
The two solutions for which #n = +m, n = —m when combined, again yield a rotating
wave as discussed in §6.

SMALL TORSION

9. GENERAL THEORY
When the angle of torsion 7 is small, the electromagnetic field may be obtained by means
of a perturbation method from that existing in the undeformed material. If r = r, is the
outer curved surface of the deformed rod or tube we assume that 7 is sufficiently small so

that 7r; < 1.
Since 7 is an even function of 7 we then have*

r"=1+0(r%?), (9-1)
and from (3-9), the coefficients a take the forms
ay+ O(1%?%) 0 0
llock|| — 0 ay+ O(7%r?) 7[a,+0(1%?)] |, (9-2)
0 2[a;+0(1%2)]  ay+O0(1%?)

while for f we have corresponding expressions with 4, 4, replaced by by, 4,, respectively.
The constants a,; b,, @, and &, are the values of «,, f, ¢; and f, respectively at 7 = 0 and q,
and b, are therefore the dielectric constant and magnetic permeability respectively for the
undeformed material.

Since p depends upon 7 through equations of the type (7-4) or (8:3), we write

p="p+1'p+0(rr3), (9-3)

* The theory of §§9, 10 and 11 is not restricted to incompressible materials.


http://rsta.royalsocietypublishing.org/

. |
/I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PROPAGATION OF ELECTROMAGNETIC WAVES 401

where % and !p are independent of 7. To the first order in 7r,, we then obtain from (4-9) and
(4-11)
A=Ay, = —K2+2%1pr, (9-4)

where K? = w?ayb,— 2. ' (9-5)
The expressions (4:14) and (4-15) then yield
A; = 0A}a,r2+ 0 (1%?), A, = A,[r+0(1%?),
A = U 1) 2l )} O,
= w?A¥(ayb,—bya,) r3+ O(1%?),
B3 = 202A}ay b, 12+ O(1%?),

9:6
D, = —wA}byr®+ O(1%?), D,= D,[r+ O(1%?), (9-6)
Dy = —0A¥(K2—n?[r?) by+ 2% (nb, — by'p) 7312+ O(1%2),
Cy = —B,+0(r?),
Cy = 202 A2a, by112 4 O (1%2). J
We assume that to the first order in 77, the vectors e and h take the forms
e="Y%17le, h="Chirlh, | (9-7)

with corresponding expressions for the physical components defined in (4:5). Introducing
these expansions with (9-6) into (4:12) and (4-13) and equating to zero the terms indepen-
dent of 7, we obtain the usual Bessel equations for %, and %,. Thus

d?(% ) 1d%, (z2_ _
dr2. r dr + (K )Oe 0, (9-8)

d2(0 z) 1 dohz 2__ 0 —_

dr2 r dr i (K ) k= 0.
The coeflicients of 7 in (4:12) and (4-13) yield similarly
d?(le,) 1d'e, [z
a": d? "r dr +(K ) }

= 20('pay—na,) %, +iv{(ayb, —bya,) r (d°h,/dr) +2a,b, °h }, (9-9)
> (99

d2( 1d% 2
bo{ (/lz)+_ drz+(K2_:l_2) lhz}

dr? r

= 2% (1pby—nb,) Oh,+iw{(ayb, —bya,) r (d%,/dr) —2a, b,%,}.

Expressions for the remaining field components are derived by introducing (9-3), (9-4)
and the expansions for ¢, and %, into (4-8) and (4-10). We obtain from the termsindependent
of 1

O, = —{i%r(d%,/dr) —nwby’h,}/(K?),
Oy = {1990, + by (A, )} (),
Op, = —{i%r(d%,/dr) +nwa,e,}/(K¥),
Ohy = {n% %, —iwayr(d,/dr)}/(K?),

(9-10)
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and similarly from the terms linear in 7 we have

ty = — o 10 =i, irg, S 0 (Opb 2 by g) ),
le, = 1?127{7101) lez+iwb0r(%fz»+ (ng, —w?a; by1?) Oez+i(ub0qzr(»1§}rl—‘}, -
1, = — [é; {iOprgal—fé+nwao le,+irg, %:—fﬂw("ﬁaﬂ?—ﬂdo%)"’ez:a -
Uy = '1?127 {nOp lhz_iwaor%‘iur (ng,—w?agb,1?) °h, —iwa, qu%},

where q, = (%?)—Zﬁ—%;%j) 1, q,= %%)—;‘b (9-12)

10. CIRCULAR WAVEGUIDE: TRANSVERSE MAGNETIC WAVE

We examine again the problem discussed in § 8 of a wave propagated along a solid circular
rod, but restrict attention to the case where the amount of torsion 7 is small. Assuming that
the outer surface r = r, is perfectly conducting, and using the notation of §9, the boundary
conditions (81) yield at 7 = r,

%, =0, d%,/dr=0, (10-1)

lg, =0, d%,/dr=o. (10-2)

For the undeformed rod, when 7 = 0, propagation is governed by equation (9-8) and we
may, following the usual procedure (see, for example, Lamont 1946), distinguish between
transverse electric or H-waves in which %, = 0 and transverse magnetic or E-waves in
which %, = 0. Any other wave propagated along the rod may be expressed as a linear
combination of waves of these two types. For the twisted rod we may examine modes of
propagation based upon these two kinds of wave in the undeformed material.

Considering first the perturbation of a transverse magnetic wave, we obtain from (9-8),
when 7 = m (m > 0) the solution*

g, =%t = AJ, (Kr), °h,=0. (10-3)

z

where 4 is a real arbitrary constant and J,,(Kr) is the Bessel function of order m of the first
kind. The Bessel function of the second kind Y,,(K7) is excluded from the solution for %, since
%, is finite at r = 0. To satisfy the boundary conditions (10-1), K must be a root of the

equation
T, (Kn) =0, (104)

and in view of (9-5) this may be regarded as the secular equation for %.

* We use the superscripts + and — to denote the real and imaginary parts respectively of a complex
quantity. We assume for the present that in (2-2) a;, #;, o and g} are real and therefore that the constants
g, ay, by, by defined in §9 are also real. Equations (9-8) are the equations of classical waveguide theory and
for an unattenuated wave % and hence also K and J,(Kr) are real. We may therefore choose 4 to be real;
the assumption of a complex value leads to no essentially new results. This part of the analysis may, of
course, be carried through formally with complex values for %, K and 4, but in either case for the perturba-
tion component we may choose !p to have the real value (10-5). Similar remarks apply to the remaining
solutions of §§10, 11, 13 and 14.
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Expressions for !¢, 14, may be derived from (9-9) by introducing (10-3) and solving the
resulting equations by the method of variation of parameters. If we choose

Iy = ma,jay =1p, (say) (10-5)

and write Ju(r) = (w/by) {(agb, —a, by) Krd,,(Kr) —2a,b,J,,(Kr)}, (10-6)
the first of (9-9) may be satisfied with !¢, = 0, while the second equation yields

Vh, =1ilh;, b = AF,(r), (10-7)

where

F(r) = 3m {Ym(Kr) f ;Jm(Ku) F(w) udu—J, (Kr) f ;Ym(Ku) fh(u)udu+MJm(Kr)}, (10-8)

J (%) = dJ,,(x)/dx and M is a real constant. In deriving (10-8) we have used the relation
(Watson 1944, §3-63)
[J.(Kr) Y, (Kr)—J,(Kr) Y, (Kr)] ! = nKr. (10-9)

We notice that as r — 0
Ju(Kr) = O(™), Y, (Kr) = O(r™™),)
Jur) = 0(rm), |

so that all terms in (10-8) are finite at r = 0. The boundary conditions (10-2) may be satis-
fied by choosing M so that

(10-10)

MJ, (Kr)+7Y,, Krl)f (Ku) f,,(w) udu—J,, Krl)f (Ku) f,,(w) udu = 0. (10-11)

The foregoing solution with # = m yields expressions for the vectors e, and E, of §6 and
the corresponding magnetic vectors h; and H,. The physical components of e, and h,
may be evaluated by introducing (10-3) and (10-7) into (9-10) and (9-11) and making use
of (9-7). If we denote these components by (e,,, €,4, €1,), (A1, B1g, By,) Tespectively we obtain

(i r) = [0 +7le), S trief, Cecl, } (10-12)
(s gy ) = [0+ 70, (5 +71h5), ir A,
where
%, = —(A%[K) J,(Kr), ¢ = [Amp|(K?r)]J,(Kr), Oef = AT, (Kr), (10-13)
Oht = —[Amway/(K?r)] J,(Kr), Ohy = — (Awa,/K) J,(Kr),
and loy = A{mwbyF,(r) —rq, KJ,,(Kr)}/(K?r),
teg = — d{wbyrFy(r) — (mq,—w?a, byr?) J,,(Kr)}/ (K?r),
= A{prE}(r) +o(%par —agmay) Ty (K} (), | (10-14)

thg = A{mpF,(r) —wao g, Kr T, (Kr)}/ (K?r),
Wy = AF,(r).

In these equations F,(r) is given by (10-8) and % by (9-5) and (10-4). Also, from (10-5) and
(9-12) we have
_ . (©9%aby+ 7 4, _ 2ma,% .
qlwm(m); 9 = a0K2 . (].O 15)
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When n = -—m (m > 0) equations (10-1) to (10-4) and (10-6) to (10-11) are unchanged
apart from the replacement of 4 by a different arbitrary constant 4" which we assume to be
real. Equations (9-5) and (10-4) continue to determine % but (10-5) is now replaced by

= —mayfag=p, (say). (10-16)
As before, we may now derive expressions for the vectors e, and E, of §6 and the corre-

sponding magnetic vectors h, and H,. Distinguishing the physical components of e, and h,
by the additional suffix 2, we then have

(205 €295 €22) == [1U(%¢; —1le7), 1% —7lef), (%], 10-17)
(122,., /120,/122) == [—l(ohf—Tlhj)’ 1[(0]20— -'Tlha), llTl/lz'], (
where | = A//A, (1018)

and %, ..., A7 are given by (10-13) and (10-14).
In the notation of §6, we have, from (9-3)

=0T ="p+7'p1, py=pF ="p+7'p,, (10-19)
and equations (6-5), (10-5) and (10-16) yicld
¢ =%z—uwt, §=r1a,/a,, (10-20)
and 0 = 0—1a,z/a,.
If we denote the physical components of E by (E,, E,, E,) we obtain from (6-7), (6-8),
(10-12) and (10-17)

E, = 1(%; —1'¢;) sin (mf+ @) — (%; +17e;) sin (md—¢), l
E, = —1(%} —1'e}) cos (mO+¢) + (%5 +17'ef) cos (mf—¢), (10-21)
E, = {lcos (mO-+¢) +cos (mf— @)} %. j

Similarly, from (10-12), (10-17) and equations analogous to (6-7) and (6-8) we obtain for
the physical components (H,, Hy, H,) of H

H, = —I(°%; —1'k;) cos (mB+@) + (°hF +17h;}) cos (m0—¢),
H, = (%5 —1h7) sin (mf+ @) — (°hg +7'hy) sin (mf— @), (10-22)
H, = {Isin (mf+ @) —sin (mf—¢)} k7.

Remembering the discussion of §6, we sce that equations (10-21) and (10-22) describe
a wave which is elliptically polarized at each point. Since p, and p, are real, the wave is
propagated without distortion or attenuation, but cach of the fields is rotated through an
angle 7a,/a, per unit length travelled along the guide. From (2-1), (2-2) and (9-2) we see
that a, may be identified with the diclectric constant of the undeformed material and is
therefore positive. From (10-20) and (3-5) it then follows that if ¢, is negative the fields rotate
in a direction opposite to that in which the tube is twisted, while the directions of torsion
and rotation of the fields are the same if q, is positive. In addition to this rotation, a
small longitudinal component of magnetic field is introduced by the torsion.

Complex values for 4 and / affect only the relative magnitudes A, A, and the directions
of the axes of the polarization ellipse at each point. The values of $, and p, and hence also
the rate of rotation of the wave are unaffected.
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If/ = 1 equations (10-21) and (10-22) reduce to
E, = 2{%; cos m0sin ¢ —7le; sinml cos ¢},
E, = 2{%; sinm0sin ¢ +17'e} cos mf cos ¢},

— 90+
E, = 2%} cosml cos ¢,

S eo : (1023)
H, = 2{%; sin mf sin ¢ 474, cosml cos ¢},
Hj = 2{%y cos m0sin ¢ — 7k sinmd cos ¢},
H, = 277 cosmfsin ¢. ’
11. CIRCULAR WAVEGUIDE: TRANSVERSE ELECTRIC WAVE
For the alternative mode of propagation, we choose the solution
O%,=0, Oh,=O%}=AJ,(Kr) (m=|n|) (11-1)

of (9-8), where 4 is again a real arbitrary constant. The boundary conditions (10-1) are
satisfied provided KX is a root of

J(Kry) = 0. (11-2)
If we choose
ly — -1 —m
IP mby[bo="p, (n=m>0), } (11-3)
or p = —mb[by="p, (n=—m<0),]
and write Jo(r) = (0/ay){(ab,—a,by) Krd,,(Kr) 4 2a,b,J,,(Kr)}, (11-4)

the second of (9-9) may be satisfied with %, = 0 while the first equation yields

le, =ile;, ley = AF,(r), (11-5)
where

F(r) = in {Ym(Kr) f ;Jm(Ku) F(w) udu—J, (K7) f ;Ym(Ku) f(@) udu+M'J,,,(Kr)}. (11-6)

The function F,(r), like the corresponding function F,(r) defined by (10-8), is finite at r = 0.
The boundary conditions (10-2) are satisfied by choosing M’ so that

M (Kn)+ ¥, (Kn) | T, (Ku) £, (w) udu—J, (Kr,) | CY,(Ku)f () udu=0. (117)

The components of € and h are evaluated by combining (11-5) and (11-1) with (9-10),
(9-11) and (9-7). As before we write e, h =e,, h; when n =m and e, h = e,,h, when
n = —m with a corresponding notation for the components of these vectors. For the com-
ponents of e, h, we then have

(elr’ €105 elz) = [Oe;-+TIe;F, i(Oe(;_}_Tleg): i l("z_]’ (11 8)
(hips gy ) = [A(%hy +1h7),  Ohg+1'hy, °hf], ‘
while the components of e,, h, take the forms
(le’ €20 622) = ["Z(Oe:— -7 lej)’ 11(085 -7 le(-?—), ilr le;]) (1 1 9)
(Roys hggs ho) = [1l(%hy —1'h7),  —1(%hg —1'hf), I°hf],

51 Vor. 255. A.
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where ! is an arbitrary constant. In (11-8) and (11-9) the quantities %;, %, ..., 4} are
given by
Oef = [Amwby[(K?r)] J,(Kr), %¢g = (Awbo/K) J;(Kr), |

Ohy = —(A%|K) Jo(Kr), °hi = [Am°p|(K?r)]J,,(K7), (11-10)
Ot — AJ, (Kr).

teit == A{%prFy(r) —w(°pb,1*—mbyqy) I, (Kr)}/ (K1),
leg = A{mOpF,(r) +wbo g, KrJ,,(Kr)}/ (K?r),
log = AF,(r), (11-11)
'y = —Afmoay F (1) + g, KrJ ,(Kr)} (K?r),
Wt = A{wayrF,(r) + (mg, — w?agb, 12) J,,(Kr)} (K?r),

and in these expressions

N o e
Equations (10-20) for ¢, § and @ are now replaced by
¢ =Oz—wt, &=1b/by,
and 0 = 0—1b,z/b,. (11-13)

Using (6-7) and (6-8), (11-8) and (11-9) we obtain for the physical components of E and H
E, = —(%; —7le}) cos (mb+¢) -+ (% + 7€) cos (mf—¢),
E, = 1(%; —71'ey) sin (ml @) — (%5 +7lez) sin (mf—¢), | (11-14)
E, = {lsin (m@+ ¢) —sin (m0— @)} lez,

H, = (% —7'h;) sin (m0+ ¢) — (h; +71h7) sin (m0—¢),
Hy = — (%} —1h}) cos (m0+ @) + (°hg +71h) cos (ml—¢), (11-15)
H, = {lcos (m0+¢) +cos(mb—¢§)} %%

If / = 1 these expressions reduce to

E, = 2{%} sin m@sin ¢ --7'e¢;” cos mf cos ¢},
E, = 2{%;5 cosmlsin ¢ —7 ez sinmd cos ¢}, (11-16)
E, = 21'¢; cosmlsin ¢,
H, = 2{%; cos mfsin ¢ — 7'k, sin mf cos ¢},
H, = 2{°h; sinmfsin ¢+ 7'k} cos mf cos ¢}, (11-17)
H, = 2%} cos mf cos ¢.
Measurements of the rate of rotation of the fields for given amounts of torsion evidently
yield, with the help of (6-5), (10-20) and (11:13) values for ¢, and 4, if we can assume that
the dielectric constant ¢, and the magnetic permeability b, for the undeformed material

are known. Measurements of this kind for ferrite filled waveguides exhibiting the Faraday
effect have been carried out by Hogan (1953).
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SMALL DEPENDENCE UPON DEFORMATION

12. GENERAL FORMULATION

We consider now the situation that arises when the angle of torsion 7 is not necessarily
small but the electromagnetic properties of the material do not depend greatly upon the
deformation. In the limiting case, when this dependence is zero, the relations (2-1) reduce to

Di = ayEi, Bi=b,H, (12-1)

where g, and &, are constants. Otherwise, when this dependence is sufficiently small, the
functions a,, ¢, and a, occurring in (2-2) take the forms

Ay = Ay+V&y, 0 =V, Ay = Vy, (12-2)

where g, is a constant, v is a small real parameter which is independent of 7 and 7, and
@, @, and @, are polynomials in the invariants (3-8). The relations (3-9) may then be written
as

ay-+va, 0 0
= o ea a | (12:3)
, 0 vr?a,  ay+vas
where a, = ay+a,(r"2—1) +a,(r'2—1)2,

ay = Ay +72r2[0, + o, (1 7212
= 72708 21 7)) o
ag = Qo+ 0,72,

may be regarded as known functions of 7 and r. Expressions corresponding to (12-3) apply
for i with ¢, and @, replaced by b, (constant) and b, (¢ =1 to 4). We note that we may,
without loss of generality choose ay, b, @, and b, in such a way that @, and 4, vanish when the
body is undeformed; 4, and b, are then the dielectric constant and magnetic permeability
respectively for the undeformed material.

Since p depends upon the deformation and on v we write
p="p+vp+00?), ; (12-5)

where % and 1p are independent of v and % is the value of p for the undeformed material.
Equations (4-9) and (4-11) then yield to the first order in v

A= —K2+4vd;, A,= —K2+1d,, (12-6)
where 8y = —0*(ayb,+a;bo) +2% ll’a} (12-7)
8, = —0*(agb,+y00) --2%p,

and K2 is defined by (9-5).
We assume t‘hat to the first order in v the field vectors e and h take the forms

e ="0¢+vle, h="0%-+plh, (12-8)

with corresponding expansions for the components defined in (4-5).
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The expansion of (4-8) and (4-10) in powers of v yields the expressions (9-10) for %,, %,,
%, and °h,, while from the coefficients of v we obtain

ey~ o

d %% \
d +0(bypr® —nye) h }

1 ] 1 _ ) do
16’0 — T(? tnOP lez+1a)b0r%—z -+ (nxz——a)2b0a47'2) 0 . de}’
(12-9)
1 1 io0 z a. %1 0 i dO’Lz
h, = { pr +nwa0 e,—0(@,°%pr® —ny,) eZ"HXZT‘HT}’
0
lho :: Klz-?:{nOﬁ lhz_i(l)aorfia.%-—*— (ﬂxl"""(l)zdo—l;“?’z) Ollz—‘i(l)X:;r%;eg})J
where 1 = 1948, %pIK? = {(0ayby+p?) 'p— 6*°p(aq b, + 3, bo)} K2
Xe = p+08,°%/K? = {(0%ayby+p?) 1p—0?°p(ayb, +, )}/ K2,
X3 = @, +a,0,/K? = —{0?a3b,+°p(a,°%p—2a,'p)}/ K2, | (12-10)

Xa = dy1a 2/K2 = —{0%a}b, +%(a,% —2a,'p)}/ K2,
X5 = Zl‘}‘bogz/Kz = —{w?ba,+p(b,°p—2b,'p)}/K?,
X = byt+by0,/K? = —{wb3a@, +°p(b,% —2b,'p)}/ K2 ’

When the coefficients (4-14) and (4-15) are expanded with the help of (12-3), (12-5) and
(12-6) we obtain to the first order in v
4,= (Zu"‘”zlz) 12, Ay = (4 +vdy)r,
Ay = [4,(K2—n2[r?) +vdz] 72,

D, = —(Dy+vDyy) 7% Dy=—(Dy+vDy) 1y} (12-11)
Dy= —[Dy,(K2—n?[r*) +vDg,] 1%,
B, = —C,=vB, 1, By=vByyr, C;=1vCyr,
where A, = wayK*, A4;, = oKa, K2—a,(5,+9,)],
4y, = 0Kd[r(ay8, +K?a,)]/dr — (28, 4-8,) ag},
4y, = —0K*20,8, (K2 —n?[r?) + KX (?ay[r* + ay0, — K% — 2n%a,)},r  (12-12)

By, = K0 (aghy—boay) K2 —np(8,—0,)},
B, = K2d(vw2ayb, K22 —n%0,)/dr,

and D,;, Dy, Dyy, D3, and Ty, are obtained from 4y, 4,5, A,y, 45, and By, respectively by
interchanging 2 and 5 and hence also §; and 9,.

When (12-11), together with the expansions for ¢, and %, are introduced into (4-12) and
(4-13) we regain from the terms independent of v the Bessel equations (9-8). The terms
linear in v yield similarly the equations

dz( 1d do .(~ d%
érgz)"l'; d:z‘i‘(Kz_“)le Ql__&+(Q2+20plp)ng+1(Q3__Z+Q40hz),

(12-13)

2(1 1
dc(lrizlz)+: ddfz_*_(Kz__w) Q5 z+(Q6+20plp) Ok +1(Q7’—*‘+Q8 2)7
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where
d _ 1d ]
Q= dr (w?afby+3, %) [(a,K?) = — a Exf%

Qy = —{0w?%a3b,+a, %p? + K?%a, +”2[‘”2d(2)(51 —b,) —0p2(a@, —a,)]/(K?r%) +2n°ag}/a,,
Qs = w{(a054~—b064) r2—n%[ay(b;—b,) — b, (a,—a,)]/ K2}/ (a,r),

od[ n0 _
Q4= - d’;l}ﬂ”‘“‘% (%Ez‘“‘l bo):l;

()

Qs = gy (033 +5,%7) (B K?) = — 535,
Qs = —{0*0§ay+b, %>+ K?by+ n*[w?b§(a, — @) — (b1 — by) 1/ (K?1%) + 20 1} by,
Q7 = a9 Qs/bo,
dr. 0 _
Qs =——;)—a—r|:a472—|—2)%—1‘%—2—(b0a2+51a0)]. )

We observe that @, are all functions of r which are independent of 'p.

13. CIRCULAR WAVEGUIDE: TRANSVERSE MAGNETIC WAVE
We assume that propagation takes place along a solid circular rod of material in which
the outer boundary r = r; is perfectly conducting. The analysis follows the lines of that
of §§10 and 11 for the case of small torsion. The boundary conditions (10-1) and (10-2)
continue to apply and we may consider modes of propagation based upon the transverse
magnetic and transverse electric waves in the undeformed material.
For propagation based upon a transverse magnetic wave we obtain, as in §10 the solution

O¢, =%t = AJ,,(Kr), %h,=0 (m=|n|), (13-1)
where 4 is a real constant and J (K1) = 0. (13-2)
From (13-1) and (12-13) it follows that
d?(le,)  1d'e, 2 "\1, _ g+
& T +(K _72) e =4, (13-3)
d2(*h,) 1d'4, n? i
(3(17'2 )‘l_; dr +(K2—"}§) lkz = lAfh (7’),
where I50 = KOy +Qur 89 (), (154
S (r) = KQyJ5u(Kr) 4 Qg J ,(KT).

From (13-3) we obtain solutions analogous to that of § 10 for the case of small torsion. Thus

we have le, = lg+ = AF*(r), L
h, — iz, s = AF5(), (13:5)
where  Fi(r) = kn {Ym(Kr) f "7, (Ku) £+ () du
0
—Ju(K) [V, (Ka) £ (wudu-+ M, (K) |
0 L (136)

Fr () = (T [, (K i (wudu
— 7, (K7) f 0 Y (Ku)f; (u)udu+M2Jm(Kr)},

M, and M, being arbitrary constants.

51-3
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It can be shown that the expressions (13-6) and hence also the solutions (13-5), remain
finite as 7 — 0 provided the dependence of 7 on R is such that 7" = dr/dR can be expressed
in the neighbourhood of r = 0 as a power series in 7 with a finite range of convergence.*
This assumption implies that as 7 — 0

7= k+0(m), (13-7)

where « is a constant and y, is a positive integer. For the invariants (3-8) we then have
ch= (k2—1)+0(r?), |
Ldej—diel) = 007, [d] = 0(™) (r,>2),]

where y, =1 if y, =1, and y, = 2 if y, = 2. Since @,, &; and &, are polynomials in the
invariants (3-8), it follows that as r — 0

(13-8)

a,=k,+0(r7) (u=1t04), (13-9)

where &, are constants and y, > 7,. A similar result applies for the functions . Since o,
gy by, 1, °p and K are constants we infer from (12-14) and (13-9) thatasr — 0

Ql = 0(7y4~1)a Q2 = 0(7’“2),
Qg = 0(7’_1), Q4 — 0(774—2),} (13'10)
and similarly Qs = 0(™), Qs=007% | (13-11)

Q,=0(r"), Q= 0(r"?).]

Hence, since y, > 1, from (13-4)

SJE@) = O(rrerm=2), [y (r) = O(rr+m=2) (13-12)

asr —> 0. Since m > 1, the functions F} () and F;; (r) defined by (13-6) remain finite as 7 — 0.

In the expression (13-6) for F}(r), the term involving M, is of the same type as that

appearing in the solution (13-1) for %, and may be incorporated into this part of the expan-

sion for ¢, We may therefore replace the arbitrary constant 4 by 4 = A(1-+vaM,/2) in

(13-1) and omit the last term from (13-6). The boundary conditions (10-2), which apply at
r = ry, are then satisfied if

Y, (kn) [

0

JolKa) f7 (@udu—J, (Kn) [V, (K f2 udu 0, (13:13)
and

V(&) [0, (Ka) fi @udu—i(Kr) [T, (Ku) £ (udut My (Kn) = 0. (13:14)

Equation (13-14) determines M,; (13-13) may be used to determine !p if we remember
that the coeflicients @, defined by (12-14) are independent of 'p. It is convenient to write

@y = Q,—2n°d,/a,, (13-15)
where, from (12-14)

0y = —{(6%a3B, 2,9+ K2a) K22 4 n2[02a} (B, — B,) — p(@, — @) 1} (apK?%).  (1316)

Remembering, from (9-5), that K2 is independent of n, we see from (12-14) and (13-16) that
Q, is also independent of n while @, is an even function of n. If we combine (13-15) with

* For an incompressible rod r’ = 1.
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(13-4) and introduce the resulting expression for f(r) into (13-13), we obtain, on solving
forp
= Z(r)/[2%F, ()] —nA(n)[[aF,(r1)]- (13:17)

In this expression

Fr) = J.(Kr) f (K Y, (Ku) udu—¥,,(Kr,) f "r(Kw)udu,  (13-18)
0 0
and if we write V(1) = KQ,J,,(Kr) + @,J ,(Kr), (13-19)

then  Z(r) =Y, (Kr,) f :J,,,(Ku) ¥ (u) udu—J,(Kr,) f Y, (Ku)W,(d)udu, (13-20)

and M (1)) = (Krl)f a,J%(Ku) udu—J,,(Kr,) frlE4Jm(Ku) Y, (Ku)udu.  (13-21)

The expression for Z,(r,) may be 31mp11ﬁed by using the result (see, for example, Watson,
1944,§5°11)

| ¥, ()
= 1220, (K1) ¥, (K1) — Y10 (K1) 11 (Kr) = 1 (K7) ¥y (KD)}, (18:22)
where ¥, (K7), ¥,(Kr) each represent one or other of the Bessel functions J,(Kr), Y, (Kr).
We obtain

Fo(r) = 111{2Y,,(Kry) I, (Kry) 1 (K1)
=T (K1) [T (K1) Yy (Kiry) + S0 (K1) ¥y (K13 (13-23)
When K has been determined from (13-2), % is obtained from (9-5) and since ! is given
by (18:17), p follows immediately from (12-5). The quaiiiities %,, %,, l¢, and ', are given

by (13-1) and (13-5) and the remaining field variables are obtained by introducing these
expressions into (9-10) and (12-9). Thus for the components of the vectors e and h we have

(e 0o ) = (% +v'er), ef+vlep, Cef+vief], (13-24)
(g k) = [ ViR, (%G i), A,
where % = —(A%|K) J,,(Kr), Cef = [An’p[(K?r)]J,(Kr), Ocf = AJ,(K7),) (13-25)
°h+ = —[Anway/(K?r)] J, (Kf) *hy = —(dway|K) J,,(Kr),
A Fe+ r ’
and g = % {nwb Fy(r)— pr——a;g—)mlfxl me(KT)}, 1
A dF; (r _
lof =2 {nol)F;(r) --wborwe’irilnt (o —w?bya,r?) Jm(Kf)}>
te; = AF[(r), (13-26)
A (, dF; _
it = 3 (9r )y B ) ol ), (),
A dF;f ,
iy = ﬁ{”OPFZ(’) —wayr (‘i (r) wKxngm(Kr)},
1y = AF;(r). J
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We observe that when 7 is sufficiently small, the coefficients @,, d,, @, by, b, and bs, like
the corresponding quantities in §9, are O(722) while to the first order in 77, @, and 4, are con-
stants. T'o the first order in 77, therefore,

X1 = X2 = (0Paobo+ ) 'p/ K2,

Xs = Xa = 200°p'p|K?, x5 = X5 = 20,°p'p/ K%,

Q=0Q5=0, Q= —2n%aa, Qs= —2nb,/b,

a4, Q3 = by Q; = w(ahy,—bya,)r,

Q,=2wb, and Q4= —2wa,
are all constants, and !p may be chosen in (13-4) to have the value ng,/a, so that f}(r), and
hence also F}(r), vanishes. When then recover from (13-26) formulae equivalent to (10-14).
To this order in 7, the quantities (13-26) are either odd or even functions of z.

When 7 is not small, the behaviour of these functions under a reversal of the sign of z is
less simple. In this case, the quantities defined in (13-18) to (13-21) are even functions of n
and from (18-7) we obtain different values of 'p by putting » — m and n = —m where mis a
positive integer. Similarly, from (12-10), (12:14) and (13-4) to (13:6) we obtain different
values for y,, @y, @3, Qs Qo> Q> g, £ (r) and F; (r) for the cases n =m and n = —m, but
in general, none of these functions is either odd or even in z#. The same is true of the compo-
nents (13:26). The first-order quantities (13:25) are, of course, identical with those of §10.

As in the previous instance, the two waves defined for the values n = m, n = —m may
be combined to give a rotating wave. We write

e=e;=(6,6¢,), h=hy=/(b,hyh.),

=1, p=p="%+v'py when n=m,
and € = €, = (0y, 009, 05,), N =Ty = (hy,, 109, h5.),

Y =1py, p=ps="p+v'py when n= —m.
Similarly we denote the expressions (13-26) by

(13-27)

1‘?l_r: 13-1}_0: 1g-ll_z: lh—li;*:v ! 105 lhrz when n=m
and by —leg,, legy, led,, k%, —lhy, ‘'hz, when n= —m,
the signs affixed to the second set of quantities being chosen so that for sufficiently small ,
they differ only by terms of order 722 from those of the first set. We allow %;, %}, %}, %;f and

%47 to represent the expressions obtained by writing n = m in (13-25).
With these conventions (13-24) yields

(€15 €105 €15) = [1(%; +vley,), e +vlef, O —i—vlefz]:} (13-28)
(Byys bygs By) = [PhF 00, i(%hg +vihy), WAL,
and when n = —m we have
(€ays €2) €2;) = [1l(%; —vley,), —I1(%f —vlefs), (% +vled)],

13:29
by o ) — [— (O —vY5),  il(Ohy —v¥),  ilo Vil } (18:29)

where [ is an arbitrary constant, introduced as in §10 to allow for the two waves being
of arbitrarily different amplitudes.
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The physical components of E and H follow by combining these expressions with equa-

tions analogous to (6-7) and (6-8). We obtain
E, = I(%; —v'e;,) sin (mf +¢) — (¢ +v'er,) sin (mf — @),
E, = —1(0%¢} —vlef) cos (md+4) + (% +vlely) cos (mB—g),
E, = (%] +v'eq,) cos (mb+¢) + (% +vlet,) cos (mf—g),
and H, = —I(°%; —v'hs}) cos (mf+¢) + (°h} +v'k,) cos (mf—¢),
Hy = (g —v'hzy) sin (mf + ¢) — (°hy +v'h7,) sin (mf—¢),
- H, = v{l'hg,sin (mf+¢) — 1k, sin (mf —g@)}.
From (6-5) and (13-27) the speed of propagation of the composite wave is
20/(pr+p2) = 20[[2% +v('py+'p2)],
and the rate of rotation per unit length of rod is
(D1—p2)[(2m) = v('p1—"p,) | (2m).
In these expressions we have, from (13-17) and (18-27)
Ditpy = Z(n) [ F(r)], }
h1—"py = —2mM(r))[[ayF,(r1)]-

14. CIRCULAR WAVEGUIDE: TRANSVERSE ELECTRIC WAVE

(13-30)

(13-31)

(13-32)

(13-33)

- (13-34)

For propagation based on the transverse electric wave in the undeformed material, we

choose, as in §11, the solution
%,=0, %,=0C}=AJ, (Kr), (m=|n|)

of (9-8) with Jo(Kr)) = 0.
Equations (12-13) then yield
d?(le,)  1d(le, n? o
o) y 102 + (K= e, = idfz ),
d?(k,) 1d('A, n?
C(ITZ )+; (dr ) + (KZ—;E) lhz = Af;(’),
where Je (1) = KQgJ,,(Kr) + Qu,,(Kr), }
Si(r) = KQs Jo(Kr) + (Q6+2%"p) J (Kr).

From (14-3) we obtain the solutions
o, = iley, ley — AF; (1),
th, =t — AF (),

where  F-(r) = 7 {Ym(Kr) f 0 J.(Ku) f= () udu

oK) [ XK f () wdu+ M1, (K),

Fi (1) = 4 (¥, (K7) [, (Ku) £ (u) udu

—J,(K) j 0 Y, (Ku) f7 (x) udu+M;Jm(Kr)}

(14-1)
(14:2)

(14-3)

(14-4)

(14+5)

(14-6)
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M; and M, being further arbitrary constants. The conditions (13-10) and (13-11) again
ensure that these functions remain finite as 7 — 0. The last term in the second of equations
(14-6) may now be incorporated into the solution (14-1) for %, and we may therefore
take M as zero in the expression for F; (7). The boundary conditions (10-2) are then satis-
fied by taking

Y, (K [ (K f; )T, (K [ 6, () £ ()t M3, (Kry) =0, (147

Y. (Kr,) f " (Ku) f () wdu— T (Kr) j Y (Ku) [+ (@) udu = 0. (14-8)
0 0
Equation (14+7) determines M ; equation (14-8) may be used to determine 'p and the
procedure is exactly analogous to that of §13. We define Qs by
Qs = —{(0%bFa, +0,°p*+ K2 bg) K+ n*[wbf(ay —ap) —p2(b, —by) 1}/ (6o K?7),  (14-9)
so that, from (12-14) Qs = Qs—2n°b,/b,. (14-10)
If we write

V(1) — KQaJu(Kn) + Qo (K1),
F(r) = VoK) [T (Ku) W, 0) udu— T, (Kn) [, (Ku) W, () ul,

0

71 ry 14-11
() = V() BT Ty (1) [BoT (060 Y, (Kt [
0 0
F,(r)) = Jo(Kn) f " T (Ku) Y, (Ku) udu— Y, (Kr,) f " J2(Ku) udu,
0 0
then 1 = () [[2°p Fy(r) ] =0ty (11) [[bo T3 (1) ]- (14-12)
In this result the expression for #,(r;) may be simplified by using (13-22) and the recur-
rence formula /
2Ky (K1) = ¥yt (K7) = 001 (K7) (14-13)

for the Bessel functions ¢,,(Kr). We obtain
SK‘%h(rl) - 7’% {2Jm Ym(‘]m~1 p_‘]m+l) + (Ym+l —Ym—l) (2Jr2n~Jm+1Jm—l)
— S Yt Y, (14:14)
where J,=J,(Kr;) and Y, =7 (Kn).

Equations (14-2) and (9-5) yield values for %, and  is obtained from (12-5). The quanti-
ties %,, %, l¢, and 'k, are given by (14'1) and (14-5) and the remaining field variables
again follow from (9-10) and (12+9). Thus, for the components of e and h we have

(eptpe) = Lo vies, iCgvie), whel, ) s
(hyo bgs b2) = [y +v'hy), kg +v'hif, k% +vikt],)
where Ogt — [Anwby/(K?)]J,,(Kr), O¢5 = (Awby/K) J;,(Kr),
Oy = —(A%]|K) Jo(Kr),  °hf = [Anp[(K?r)]J,(K7), (14-16)

Oht — AJ, (Kr),
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dF;
lef =%z :017 ( ")

+
leg :Ié;{nopﬁ“( Y wbyr —2-2 dF;

-

+nwby Fyf (1) — w(oﬁzﬂz'“”?(s)*]m(l(")}s

dF(r) | +wKysrd,, (Kr)}

dr
l —_ —
e; = AF; (1), S (14:17)
I = Kzr{ pr F” (r) +nway Fy (r) 4+ Kyord,, (Kr)}
it = s (10 B )+waor§%:r—(ﬁ+(nxl—w2ao7)'4r2) T, ()
Vi = AFy (7). J
As before, the values n =m, n = —m (m = |n|) yield different values for !p and for the

components of e and h, and combination of the two waves thus defined produces a rotating
wave. For the components of these two waves we employ the notation of (13:27), We allow
O, O¢5, Oh, Okt and %7 to represent the expressions obtained by writing # = m in (14-16)
and denote the expressions (14:17) by

- 1= 1p— 1+ 1p+ _
lef,, le, len, 'hi, iy, W, when n=m

and lef,, —lesy, lez, —'Mg,, hiy, ki, when n= —m.

We then have
(elﬂ €105 elz) = [Oe;r "I_Vleiyr: i(oeg "l—Vlei—f))’ v 181_2]9 } (14-18)
(hips Prgs y) = [1(%h7 +v1hy,),  Ohg +vlhiy, °hF +viht],

and (ears €ops €3,) = [ —1(%f —v'e3,), 1l(%5 —vlez), 1lvles],

14:19
(g gy ) — [U(ChG =Yg, — (% — ), u%:w%zz)],} (14:19)

where [ is again an arbitrary constant. From (6-7) and (6-8) the physical components of E
and H become

E, = —1(%;} —vle,) cos (ml+ @) + (% +vlef,) cos (mf — @),

E, = (%5 —vley,) sin (mb+¢) — %z +vlepy) sin (md —¢), (14-20)
E, = v{llez, sin (mf+ @) — le, sin (mf — )},
and H, = (%5 —v Vg, sin (18- ) — (O +v'iz,) sin (md— ),
H, = — (%} —v ) cos (ml-+@) -+ (Ohf v ht,) cos (ml—g), (14-21)

H, = (%} +v1hE,) cos (mO-+ @) -+ (°hF +v1kt,) cos (md —@).
Also, from (14-12) and (13-27)
PR 2R AGYI N ZS1GNE |
Yy—py = —2mty (r) (007, ()], |

and the speed of propagation and rate of rotation of the resultant wave are obtained by
inserting these expressions into (13-32) and (13-33).

(14-22)

The results presented in this paper were obtained in the course of research sponsored by
the National Science Foundation.
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